Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Psychiatry ; 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38030818

ABSTRACT

PTEN germline mutations account for ~0.2-1% of all autism spectrum disorder (ASD) cases, as well as ~17% of ASD patients with macrocephaly, making it one of the top ASD-associated risk genes. Individuals with germline PTEN mutations receive the molecular diagnosis of PTEN Hamartoma Tumor Syndrome (PHTS), an inherited cancer predisposition syndrome, about 20-23% of whom are diagnosed with ASD. We generated forebrain organoid cultures from gene-edited isogenic human induced pluripotent stem cells (hiPSCs) harboring a PTENG132D (ASD) or PTENM134R (cancer) mutant allele to model how these mutations interrupt neurodevelopmental processes. Here, we show that the PTENG132D allele disrupts early neuroectoderm formation during the first several days of organoid generation, and results in deficient electrophysiology. While organoids generated from PTENM134R hiPSCs remained morphologically similar to wild-type organoids during this early stage in development, we observed disrupted neuronal differentiation, radial glia positioning, and cortical layering in both PTEN-mutant organoids at the later stage of 72+ days of development. Perifosine, an AKT inhibitor, reduced over-activated AKT and partially corrected the abnormalities in cellular organization observed in PTENG132D organoids. Single cell RNAseq analyses on early-stage organoids revealed that genes related to neural cell fate were decreased in PTENG132D mutant organoids, and AKT inhibition was capable of upregulating gene signatures related to neuronal cell fate and CNS maturation pathways. These findings demonstrate that different PTEN missense mutations can have a profound impact on neurodevelopment at diverse stages which in turn may predispose PHTS individuals to ASD. Further study will shed light on ways to mitigate pathological impact of PTEN mutants on neurodevelopment by stage-specific manipulation of downstream PTEN signaling components.

2.
Hum Mol Genet ; 32(20): 2981-2995, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37531237

ABSTRACT

Protein phosphatase 1 regulatory subunit 3F (PPP1R3F) is a member of the glycogen targeting subunits (GTSs), which belong to the large group of regulatory subunits of protein phosphatase 1 (PP1), a major eukaryotic serine/threonine protein phosphatase that regulates diverse cellular processes. Here, we describe the identification of hemizygous variants in PPP1R3F associated with a novel X-linked recessive neurodevelopmental disorder in 13 unrelated individuals. This disorder is characterized by developmental delay, mild intellectual disability, neurobehavioral issues such as autism spectrum disorder, seizures and other neurological findings including tone, gait and cerebellar abnormalities. PPP1R3F variants segregated with disease in affected hemizygous males that inherited the variants from their heterozygous carrier mothers. We show that PPP1R3F is predominantly expressed in brain astrocytes and localizes to the endoplasmic reticulum in cells. Glycogen content in PPP1R3F knockout astrocytoma cells appears to be more sensitive to fluxes in extracellular glucose levels than in wild-type cells, suggesting that PPP1R3F functions in maintaining steady brain glycogen levels under changing glucose conditions. We performed functional studies on nine of the identified variants and observed defects in PP1 binding, protein stability, subcellular localization and regulation of glycogen metabolism in most of them. Collectively, the genetic and molecular data indicate that deleterious variants in PPP1R3F are associated with a new X-linked disorder of glycogen metabolism, highlighting the critical role of GTSs in neurological development. This research expands our understanding of neurodevelopmental disorders and the role of PP1 in brain development and proper function.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Intellectual Disability , Neurodevelopmental Disorders , Male , Humans , Intellectual Disability/genetics , Intellectual Disability/complications , Protein Phosphatase 1/genetics , Autism Spectrum Disorder/genetics , Autistic Disorder/genetics , Glucose , Glycogen , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/complications
3.
Hum Mol Genet ; 29(14): 2353-2364, 2020 08 11.
Article in English | MEDLINE | ID: mdl-32588888

ABSTRACT

Individuals with germline mutations in the gene encoding phosphatase and tensin homolog on chromosome ten (PTEN) are diagnosed with PTEN hamartoma tumor syndrome (PHTS) and are at high risk for developing breast, thyroid and other cancers and/or autoimmunity or neurodevelopmental issues including autism spectrum disorders. Although well recognized as a tumor suppressor, involvement of PTEN mutations in mediating such a diverse range of phenotypes indicates a more central involvement for PTEN in immunity than previously recognized. To address this, sequencing of the T-cell receptor variable-region ß-chain was performed on peripheral blood from PHTS patients. Based on patient findings, we performed mechanistic studies in two Pten knock-in murine models, distinct from each other in cell compartment-specific predominance of Pten. We found that PTEN mutations in humans and mice are associated with a skewed T- and B-cell gene repertoire, characterized by increased prevalence of high-frequency clones. Immunological characterization showed that Pten mutants have increased B-cell proliferation and a proclivity towards increased T-cell reactivity upon Toll-like-receptor stimulation. Furthermore, decreases in nuclear but not cytoplasmic Pten levels associated with a reduction in expression of the autoimmune regulator (Aire), a critical mediator of central immune tolerance. Mechanistically, we show that nuclear PTEN most likely regulates Aire expression via its emerging role in splicing regulation. We conclude that germline disruption of PTEN, both in human and mouse, results in compromised central immune tolerance processes that may significantly impact individual stress responses and therefore predisposition to autoimmunity and cancer.


Subject(s)
Hamartoma Syndrome, Multiple/genetics , PTEN Phosphohydrolase/genetics , Receptors, Antigen, T-Cell, alpha-beta/genetics , Transcription Factors/genetics , Animals , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Cell Proliferation/genetics , Disease Models, Animal , Female , Gene Knock-In Techniques , Germ-Line Mutation/genetics , Hamartoma Syndrome, Multiple/blood , Hamartoma Syndrome, Multiple/immunology , Hamartoma Syndrome, Multiple/pathology , Humans , Immune Tolerance/genetics , Male , Mice , Receptors, Antigen, T-Cell, alpha-beta/immunology , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology , AIRE Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...